Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This extensive focused library is tailor-made using the latest virtual screening and parameter assessment technology, operated by the Receptor.AI drug discovery platform. This technique is more effective than traditional methods, offering compounds with improved activity, selectivity, and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We employ our advanced, specialised process to create targeted libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology leverages molecular simulations to examine a vast array of proteins, capturing their dynamics in both isolated forms and in complexes with other proteins. Through ensemble virtual screening, we thoroughly account for the protein's conformational mobility, identifying critical binding sites within functional regions and distant allosteric locations. This detailed exploration ensures that we comprehensively assess every possible mechanism of action, with the objective of identifying novel therapeutic targets and lead compounds that span a wide spectrum of biological functions.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
Q8WUM4

UPID:
PDC6I_HUMAN

ALTERNATIVE NAMES:
ALG-2-interacting protein 1; ALG-2-interacting protein X; Hp95

ALTERNATIVE UPACC:
Q8WUM4; C5MQH7; E9PFU1; Q6NUS1; Q9BX86; Q9NUN0; Q9P2H2; Q9UKL5

BACKGROUND:
The multifunctional Programmed cell death 6-interacting protein, known alternatively as ALG-2-interacting protein X or Hp95, is integral to cellular processes such as apoptosis, tight junction integrity, and exosome biogenesis. It interacts with components like CHMP4 for ESCRT-III complex functions, playing a crucial role in cellular division and viral budding processes.

THERAPEUTIC SIGNIFICANCE:
Its association with the genetic condition Microcephaly 29, which leads to significant neurodevelopmental challenges, underscores the therapeutic potential of targeting Programmed cell death 6-interacting protein in disease treatment and management.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.