Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We use our state-of-the-art dedicated workflow for designing focused libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology leverages molecular simulations to examine a vast array of proteins, capturing their dynamics in both isolated forms and in complexes with other proteins. Through ensemble virtual screening, we thoroughly account for the protein's conformational mobility, identifying critical binding sites within functional regions and distant allosteric locations. This detailed exploration ensures that we comprehensively assess every possible mechanism of action, with the objective of identifying novel therapeutic targets and lead compounds that span a wide spectrum of biological functions.


Our library is unique due to several crucial aspects:


  • Receptor.AI compiles all relevant data on the target protein, such as past experimental results, literature findings, known ligands, and structural data, thereby enhancing the likelihood of focusing on the most significant compounds.

  • By utilizing advanced molecular simulations, the platform is adept at locating potential binding sites, rendering the compounds in the focused library well-suited for unearthing allosteric inhibitors and binders for hidden pockets.

  • The platform is supported by more than 50 highly specialized AI models, all of which have been rigorously tested and validated in diverse drug discovery and research programs. Its design emphasizes efficiency, reliability, and accuracy, crucial for producing focused libraries.

  • Receptor.AI extends beyond just creating focused libraries; it offers a complete spectrum of services and solutions during the preclinical drug discovery phase, with a success-dependent pricing strategy that reduces risk and fosters shared success in the project.


PARTNER
Receptor.AI
 
UPACC
Q92888

UPID:
ARHG1_HUMAN

ALTERNATIVE NAMES:
115 kDa guanine nucleotide exchange factor; Sub1.5

ALTERNATIVE UPACC:
Q92888; O00513; Q6NX52; Q8N4J4; Q96BF4; Q96F17; Q9BSB1

BACKGROUND:
The protein Rho guanine nucleotide exchange factor 1, with aliases 115 kDa guanine nucleotide exchange factor and Sub1.5, is integral to the modulation of RhoA GTPase by GNA12 and GNA13 subunits. It serves both as a GTPase-activating protein and a guanine nucleotide exchange factor, crucial for the activation and inhibition of RhoA GTPase, thereby influencing cellular dynamics and signaling pathways.

THERAPEUTIC SIGNIFICANCE:
Given its critical function in immune response regulation, as evidenced by its association with Immunodeficiency 62, Rho guanine nucleotide exchange factor 1 presents a promising avenue for the development of targeted therapies aimed at enhancing immune system performance and treating antibody-related disorders.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.