Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This comprehensive focused library is produced on demand with state-of-the-art virtual screening and parameter assessment technology driven by Receptor.AI drug discovery platform. This approach outperforms traditional methods and provides higher-quality compounds with superior activity, selectivity and safety.


The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


Our top-notch dedicated system is used to design specialised libraries.


 

Fig. 1. The screening workflow of Receptor.AI

By deploying molecular simulations, our approach comprehensively covers a broad array of proteins, tracking their flexibility and dynamics individually and within complexes. Ensemble virtual screening is utilised to take into account conformational dynamics, identifying pivotal binding sites located within functional regions and at allosteric locations. This thorough exploration ensures that every conceivable mechanism of action is considered, aiming to identify new therapeutic targets and advance lead compounds throughout a vast spectrum of biological functions.


Our library stands out due to several important features:


  • The Receptor.AI platform compiles comprehensive data on the target protein, encompassing previous experiments, literature, known ligands, structural details, and more, leading to a higher chance of selecting the most relevant compounds.

  • Advanced molecular simulations on the platform help pinpoint potential binding sites, making the compounds in our focused library ideal for finding allosteric inhibitors and targeting cryptic pockets.

  • Receptor.AI boasts over 50 tailor-made AI models, rigorously tested and proven in various drug discovery projects and research initiatives. They are crafted for efficacy, dependability, and precision, all of which are key in creating our focused libraries.

  • Beyond creating focused libraries, Receptor.AI offers comprehensive services and complete solutions throughout the preclinical drug discovery phase. Our success-based pricing model minimises risk and maximises the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
Q969Y2

UPID:
GTPB3_HUMAN

ALTERNATIVE NAMES:
GTP-binding protein 3; Mitochondrial GTP-binding protein 1

ALTERNATIVE UPACC:
Q969Y2; A6NFH1; A6NIG5; A6NKR4; A8K7B4; B7Z4V8; Q8TCY6; Q8WUW9; Q969G4; Q9BX61

BACKGROUND:
GTPBP3, known for its roles as GTP-binding protein 3 and Mitochondrial GTP-binding protein 1, is integral to mitochondrial tRNA modifications, specifically the mnm(5)s(2)U34 modification of the wobble uridine base. This function is critical for mitochondrial protein synthesis and overall cellular energy production.

THERAPEUTIC SIGNIFICANCE:
The protein's association with Combined oxidative phosphorylation deficiency 23, a disease characterized by severe cardiomyopathy and neurological symptoms, underscores the therapeutic potential of targeting GTPBP3. Exploring GTPBP3's function could lead to novel treatments for mitochondrial disorders, offering hope for affected individuals.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.