Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This extensive focused library is tailor-made using the latest virtual screening and parameter assessment technology, operated by the Receptor.AI drug discovery platform. This technique is more effective than traditional methods, offering compounds with improved activity, selectivity, and safety.


We pick out particular compounds from an extensive virtual database of more than 60 billion molecules. The preparation and shipment of these compounds are facilitated by Reaxense.


The library features a range of promising modulators, each detailed with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Plus, each compound is presented with its ideal docking poses, affinity scores, and activity scores, ensuring a thorough insight.


We utilise our cutting-edge, exclusive workflow to develop focused libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

It includes comprehensive molecular simulations of the catalytic and allosteric binding pockets and the ensemble virtual screening accounting for their conformational mobility. In the case of designing modulators, the structural changes induced by reaction intermediates are taken into account to leverage activity and selectivity.


Our library is unique due to several crucial aspects:


  • Receptor.AI compiles all relevant data on the target protein, such as past experimental results, literature findings, known ligands, and structural data, thereby enhancing the likelihood of focusing on the most significant compounds.

  • By utilizing advanced molecular simulations, the platform is adept at locating potential binding sites, rendering the compounds in the focused library well-suited for unearthing allosteric inhibitors and binders for hidden pockets.

  • The platform is supported by more than 50 highly specialized AI models, all of which have been rigorously tested and validated in diverse drug discovery and research programs. Its design emphasizes efficiency, reliability, and accuracy, crucial for producing focused libraries.

  • Receptor.AI extends beyond just creating focused libraries; it offers a complete spectrum of services and solutions during the preclinical drug discovery phase, with a success-dependent pricing strategy that reduces risk and fosters shared success in the project.


PARTNER
Receptor.AI
 
UPACC
Q96G46

UPID:
DUS3L_HUMAN

ALTERNATIVE NAMES:
mRNA-dihydrouridine synthase DUS3L; tRNA-dihydrouridine synthase 3-like

ALTERNATIVE UPACC:
Q96G46; Q96HM5; Q9BSU4; Q9H877; Q9NPR1

BACKGROUND:
tRNA-dihydrouridine(47) synthase [NAD(P)(+)]-like, alternatively known as mRNA-dihydrouridine synthase DUS3L and tRNA-dihydrouridine synthase 3-like, is essential for RNA modification. It mediates the formation of dihydrouridine in tRNAs, mRNAs, and some lncRNAs, specifically targeting uridine in position 47 of the D-loop in cytoplasmic tRNAs. This enzymatic activity is crucial for RNA stability and function.

THERAPEUTIC SIGNIFICANCE:
The exploration of tRNA-dihydrouridine(47) synthase [NAD(P)(+)]-like's function offers a promising avenue for therapeutic intervention. Its critical role in RNA modification underscores its potential as a novel target in the development of innovative drug therapies.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.