Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


Contained in the library are leading modulators, each labelled with 38 ADME-Tox and 32 physicochemical and drug-likeness qualities. In addition, each compound is illustrated with its optimal docking poses, affinity scores, and activity scores, giving a complete picture.


Our high-tech, dedicated method is applied to construct targeted libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology leverages molecular simulations to examine a vast array of proteins, capturing their dynamics in both isolated forms and in complexes with other proteins. Through ensemble virtual screening, we thoroughly account for the protein's conformational mobility, identifying critical binding sites within functional regions and distant allosteric locations. This detailed exploration ensures that we comprehensively assess every possible mechanism of action, with the objective of identifying novel therapeutic targets and lead compounds that span a wide spectrum of biological functions.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
Q96N67

UPID:
DOCK7_HUMAN

ALTERNATIVE NAMES:
-

ALTERNATIVE UPACC:
Q96N67; Q00M63; Q2PPY7; Q45RE8; Q45RE9; Q5T1B9; Q5T1C0; Q6ZV32; Q8TB82; Q96NG6; Q96NI0; Q9C092

BACKGROUND:
The Dedicator of cytokinesis protein 7, known for its GEF activity towards Rac1 and Rac3, is essential for neuronal development and polarization. It influences axon formation through STMN1 phosphorylation and plays a role in the regulation of the actin cytoskeleton as part of the DISP complex. Additionally, DOCK7 is involved in pigmentation and cortical neurogenesis, showcasing its broad biological significance.

THERAPEUTIC SIGNIFICANCE:
Understanding the role of Dedicator of cytokinesis protein 7 could open doors to potential therapeutic strategies for Developmental and epileptic encephalopathy 23. This severe neurological disorder, linked to DOCK7, presents a compelling case for the exploration of targeted therapies that could alleviate its profound impact on affected individuals.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.