Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This comprehensive focused library is produced on demand with state-of-the-art virtual screening and parameter assessment technology driven by Receptor.AI drug discovery platform. This approach outperforms traditional methods and provides higher-quality compounds with superior activity, selectivity and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


The library features a range of promising modulators, each detailed with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Plus, each compound is presented with its ideal docking poses, affinity scores, and activity scores, ensuring a thorough insight.


Our high-tech, dedicated method is applied to construct targeted libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology leverages molecular simulations to examine a vast array of proteins, capturing their dynamics in both isolated forms and in complexes with other proteins. Through ensemble virtual screening, we thoroughly account for the protein's conformational mobility, identifying critical binding sites within functional regions and distant allosteric locations. This detailed exploration ensures that we comprehensively assess every possible mechanism of action, with the objective of identifying novel therapeutic targets and lead compounds that span a wide spectrum of biological functions.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
Q99598

UPID:
TSNAX_HUMAN

ALTERNATIVE NAMES:
Translin-associated factor X

ALTERNATIVE UPACC:
Q99598; B1APC6

BACKGROUND:
The function of Translin-associated protein X, also referred to as Translin-associated factor X, is pivotal in the activation of the RNA-induced silencing complex (RISC) alongside TSN, acting as an endonuclease. Its potential involvement in spermatogenesis suggests a significant role in fertility and reproductive processes.

THERAPEUTIC SIGNIFICANCE:
Exploring the functionalities of Translin-associated protein X offers promising avenues for the development of novel therapeutic approaches, particularly in treating genetic and reproductive conditions.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.