Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.


We carefully select specific compounds from a vast collection of over 60 billion molecules in virtual chemical space. Reaxense helps in synthesizing and delivering these compounds.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


Our high-tech, dedicated method is applied to construct targeted libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Utilising molecular simulations, our approach thoroughly examines a wide array of proteins, tracking their conformational changes individually and within complexes. Ensemble virtual screening enables us to address conformational flexibility, revealing essential binding sites at functional regions and allosteric locations. Our rigorous analysis guarantees that no potential mechanism of action is overlooked, aiming to uncover new therapeutic targets and lead compounds across diverse biological functions.


Our library is unique due to several crucial aspects:


  • Receptor.AI compiles all relevant data on the target protein, such as past experimental results, literature findings, known ligands, and structural data, thereby enhancing the likelihood of focusing on the most significant compounds.

  • By utilizing advanced molecular simulations, the platform is adept at locating potential binding sites, rendering the compounds in the focused library well-suited for unearthing allosteric inhibitors and binders for hidden pockets.

  • The platform is supported by more than 50 highly specialized AI models, all of which have been rigorously tested and validated in diverse drug discovery and research programs. Its design emphasizes efficiency, reliability, and accuracy, crucial for producing focused libraries.

  • Receptor.AI extends beyond just creating focused libraries; it offers a complete spectrum of services and solutions during the preclinical drug discovery phase, with a success-dependent pricing strategy that reduces risk and fosters shared success in the project.


PARTNER
Receptor.AI
 
UPACC
Q9BQA9

UPID:
CYBC1_HUMAN

ALTERNATIVE NAMES:
Essential for reactive oxygen species protein

ALTERNATIVE UPACC:
Q9BQA9; E1B6X3; Q96NR1

BACKGROUND:
The Cytochrome b-245 chaperone 1, also known as Essential for reactive oxygen species protein, is integral to the body's defense against infections. It ensures the proper function of the cytochrome b-245 heterodimer by stabilizing its CYBA and CYBB subunits, thereby facilitating the phagocyte respiratory burst essential for innate immunity.

THERAPEUTIC SIGNIFICANCE:
Associated with chronic granulomatous disease, autosomal recessive, 5 (CGD5), Cytochrome b-245 chaperone 1's dysfunction leads to severe infections and inflammation. Targeting this protein's pathway offers a promising avenue for developing treatments for CGD5, highlighting its therapeutic significance in combating immune deficiencies.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.