Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This comprehensive focused library is produced on demand with state-of-the-art virtual screening and parameter assessment technology driven by Receptor.AI drug discovery platform. This approach outperforms traditional methods and provides higher-quality compounds with superior activity, selectivity and safety.


We carefully select specific compounds from a vast collection of over 60 billion molecules in virtual chemical space. Reaxense helps in synthesizing and delivering these compounds.


Contained in the library are leading modulators, each labelled with 38 ADME-Tox and 32 physicochemical and drug-likeness qualities. In addition, each compound is illustrated with its optimal docking poses, affinity scores, and activity scores, giving a complete picture.


We employ our advanced, specialised process to create targeted libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

It includes comprehensive molecular simulations of the catalytic and allosteric binding pockets and the ensemble virtual screening accounting for their conformational mobility. In the case of designing modulators, the structural changes induced by reaction intermediates are taken into account to leverage activity and selectivity.


Our library distinguishes itself through several key aspects:


  • The Receptor.AI platform integrates all available data about the target protein, including past experiments, literature data, known ligands, structural information and more. This consolidated approach maximises the probability of prioritising highly relevant compounds.

  • The platform uses sophisticated molecular simulations to identify possible binding sites so that the compounds in the focused library are suitable for discovering allosteric inhibitors and the binders for cryptic pockets.

  • The platform integrates over 50 highly customisable AI models, which are thoroughly tested and validated on a multitude of commercial drug discovery programs and research projects. It is designed to be efficient, reliable and accurate. All this power is utilised when producing the focused libraries.

  • In addition to producing the focused libraries, Receptor.AI provides services and end-to-end solutions at every stage of preclinical drug discovery. The pricing model is success-based, which reduces your risks and leverages the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
Q9BZY9

UPID:
TRI31_HUMAN

ALTERNATIVE NAMES:
Tripartite motif-containing protein 31

ALTERNATIVE UPACC:
Q9BZY9; A6NLX6; A9R9Q4; Q53H52; Q5RI37; Q5SRJ7; Q5SRJ8; Q5SS28; Q96AK4; Q96AP8; Q99579; Q9BZY8

BACKGROUND:
The E3 ubiquitin-protein ligase TRIM31, known for its regulatory functions in the immune system, mediates crucial ubiquitination processes. It facilitates 'Lys-63'-linked ubiquitination of MAVS for antiviral defense and 'Lys-48'-linked ubiquitination of NLRP3, inhibiting the NLRP3 inflammasome. This protein is also implicated in Src-induced cell growth, underscoring its diverse biological roles.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of E3 ubiquitin-protein ligase TRIM31 offers promising avenues for therapeutic intervention. Its critical role in immune regulation and cell growth presents unique opportunities for the development of novel treatments targeting viral diseases and disorders related to immune dysregulation.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.