Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This comprehensive focused library is produced on demand with state-of-the-art virtual screening and parameter assessment technology driven by Receptor.AI drug discovery platform. This approach outperforms traditional methods and provides higher-quality compounds with superior activity, selectivity and safety.


Our selection of compounds is from a large virtual library of over 60 billion molecules. The production and distribution of these compounds are managed by Reaxense.


Contained in the library are leading modulators, each labelled with 38 ADME-Tox and 32 physicochemical and drug-likeness qualities. In addition, each compound is illustrated with its optimal docking poses, affinity scores, and activity scores, giving a complete picture.


Our high-tech, dedicated method is applied to construct targeted libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

The procedure entails thorough molecular simulations of the catalytic and allosteric binding pockets, accompanied by ensemble virtual screening that factors in their conformational flexibility. When developing modulators, the structural modifications brought about by reaction intermediates are factored in to optimize activity and selectivity.


Our library stands out due to several important features:


  • The Receptor.AI platform compiles comprehensive data on the target protein, encompassing previous experiments, literature, known ligands, structural details, and more, leading to a higher chance of selecting the most relevant compounds.

  • Advanced molecular simulations on the platform help pinpoint potential binding sites, making the compounds in our focused library ideal for finding allosteric inhibitors and targeting cryptic pockets.

  • Receptor.AI boasts over 50 tailor-made AI models, rigorously tested and proven in various drug discovery projects and research initiatives. They are crafted for efficacy, dependability, and precision, all of which are key in creating our focused libraries.

  • Beyond creating focused libraries, Receptor.AI offers comprehensive services and complete solutions throughout the preclinical drug discovery phase. Our success-based pricing model minimises risk and maximises the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
Q9GZR7

UPID:
DDX24_HUMAN

ALTERNATIVE NAMES:
DEAD box protein 24

ALTERNATIVE UPACC:
Q9GZR7; E7EMJ4; Q4V9L5

BACKGROUND:
The ATP-dependent RNA helicase DDX24, alternatively named DEAD box protein 24, is integral to the regulation of RNA processing. This protein's ATPase activity is essential for the unwinding and restructuring of RNA molecules, facilitating various aspects of RNA biology.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of ATP-dependent RNA helicase DDX24 holds promise for uncovering new therapeutic avenues. Given its significant role in RNA processing, targeting DDX24 could lead to innovative treatments for diseases linked to RNA dysregulation.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.