Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.


We carefully select specific compounds from a vast collection of over 60 billion molecules in virtual chemical space. Reaxense helps in synthesizing and delivering these compounds.


In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We utilise our cutting-edge, exclusive workflow to develop focused libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology leverages molecular simulations to examine a vast array of proteins, capturing their dynamics in both isolated forms and in complexes with other proteins. Through ensemble virtual screening, we thoroughly account for the protein's conformational mobility, identifying critical binding sites within functional regions and distant allosteric locations. This detailed exploration ensures that we comprehensively assess every possible mechanism of action, with the objective of identifying novel therapeutic targets and lead compounds that span a wide spectrum of biological functions.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
Q9H936

UPID:
GHC1_HUMAN

ALTERNATIVE NAMES:
Glutamate/H(+) symporter 1; Solute carrier family 25 member 22

ALTERNATIVE UPACC:
Q9H936; A8K366; C9J1H6; E9PJD3; E9PKB2; E9PL68; E9PN26; E9PNQ3; E9PP01; E9PR97; Q8TBU8

BACKGROUND:
The Mitochondrial glutamate carrier 1, identified by its alternative names Glutamate/H(+) symporter 1 and Solute carrier family 25 member 22, is essential for glutamate transport into mitochondria, impacting energy metabolism and insulin secretion.

THERAPEUTIC SIGNIFICANCE:
Linked to Developmental and epileptic encephalopathy 3, a devastating epilepsy syndrome, Mitochondrial glutamate carrier 1's dysfunction highlights its potential as a therapeutic target. Exploring its mechanisms could lead to groundbreaking treatments for DEE3, offering hope to affected families.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.