Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This comprehensive focused library is produced on demand with state-of-the-art virtual screening and parameter assessment technology driven by Receptor.AI drug discovery platform. This approach outperforms traditional methods and provides higher-quality compounds with superior activity, selectivity and safety.


The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.


The library includes a list of the most effective modulators, each annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Furthermore, each compound is shown with its optimal docking poses, affinity scores, and activity scores, offering a detailed summary.


We utilise our cutting-edge, exclusive workflow to develop focused libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Utilising molecular simulations, our approach thoroughly examines a wide array of proteins, tracking their conformational changes individually and within complexes. Ensemble virtual screening enables us to address conformational flexibility, revealing essential binding sites at functional regions and allosteric locations. Our rigorous analysis guarantees that no potential mechanism of action is overlooked, aiming to uncover new therapeutic targets and lead compounds across diverse biological functions.


Our library is unique due to several crucial aspects:


  • Receptor.AI compiles all relevant data on the target protein, such as past experimental results, literature findings, known ligands, and structural data, thereby enhancing the likelihood of focusing on the most significant compounds.

  • By utilizing advanced molecular simulations, the platform is adept at locating potential binding sites, rendering the compounds in the focused library well-suited for unearthing allosteric inhibitors and binders for hidden pockets.

  • The platform is supported by more than 50 highly specialized AI models, all of which have been rigorously tested and validated in diverse drug discovery and research programs. Its design emphasizes efficiency, reliability, and accuracy, crucial for producing focused libraries.

  • Receptor.AI extends beyond just creating focused libraries; it offers a complete spectrum of services and solutions during the preclinical drug discovery phase, with a success-dependent pricing strategy that reduces risk and fosters shared success in the project.


PARTNER
Receptor.AI
 
UPACC
Q9NQM4

UPID:
DAAF6_HUMAN

ALTERNATIVE NAMES:
PIH1 domain-containing protein 3; Sarcoma antigen NY-SAR-97

ALTERNATIVE UPACC:
Q9NQM4; D3DUX5; Q86WE1

BACKGROUND:
The protein Dynein axonemal assembly factor 6, known alternatively as PIH1 domain-containing protein 3 and Sarcoma antigen NY-SAR-97, is integral to the formation of axonemal dynein. Its function is critical for the development and maintenance of motile cilia, which play a key role in cellular processes such as fluid movement.

THERAPEUTIC SIGNIFICANCE:
The association of Dynein axonemal assembly factor 6 with primary ciliary dyskinesia, specifically the X-linked Ciliary dyskinesia, primary, 36, underscores the therapeutic potential of this protein. Understanding its role offers a promising avenue for developing treatments for this genetic disorder, which is characterized by chronic respiratory issues and, in some cases, situs inversus.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.