Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This comprehensive focused library is produced on demand with state-of-the-art virtual screening and parameter assessment technology driven by Receptor.AI drug discovery platform. This approach outperforms traditional methods and provides higher-quality compounds with superior activity, selectivity and safety.


The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.


The library includes a list of the most effective modulators, each annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Furthermore, each compound is shown with its optimal docking poses, affinity scores, and activity scores, offering a detailed summary.


We employ our advanced, specialised process to create targeted libraries for ion channels.


 

Fig. 1. The screening workflow of Receptor.AI

It includes extensive molecular simulations of the channel in its native membrane environment in open, closed and inactivated forms and the ensemble virtual screening accounting for conformational mobility in each of these states. Tentative binding pockets are considered inside the pore, in the gating region and in the allosteric locations to cover the whole spectrum of possible mechanisms of action.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
Q9NSA2

UPID:
KCND1_HUMAN

ALTERNATIVE NAMES:
Voltage-gated potassium channel subunit Kv4.1

ALTERNATIVE UPACC:
Q9NSA2; A6NEF1; B2RCG0; O75671

BACKGROUND:
The protein Kv4.1, identified by its unique identifier Q9NSA2, is integral to the functioning of A-type potassium channels, which are pivotal for rapid inactivation processes in cardiac and neuronal cells. This protein's modulation of channel properties through its interaction with various subunits underscores its significance in maintaining cellular electrical stability.

THERAPEUTIC SIGNIFICANCE:
Exploring the functionalities of Kv4.1 offers promising avenues for the development of novel therapeutic interventions.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.