Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.


The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We use our state-of-the-art dedicated workflow for designing focused libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

It includes comprehensive molecular simulations of the catalytic and allosteric binding pockets and the ensemble virtual screening accounting for their conformational mobility. In the case of designing modulators, the structural changes induced by reaction intermediates are taken into account to leverage activity and selectivity.


Our library stands out due to several important features:


  • The Receptor.AI platform compiles comprehensive data on the target protein, encompassing previous experiments, literature, known ligands, structural details, and more, leading to a higher chance of selecting the most relevant compounds.

  • Advanced molecular simulations on the platform help pinpoint potential binding sites, making the compounds in our focused library ideal for finding allosteric inhibitors and targeting cryptic pockets.

  • Receptor.AI boasts over 50 tailor-made AI models, rigorously tested and proven in various drug discovery projects and research initiatives. They are crafted for efficacy, dependability, and precision, all of which are key in creating our focused libraries.

  • Beyond creating focused libraries, Receptor.AI offers comprehensive services and complete solutions throughout the preclinical drug discovery phase. Our success-based pricing model minimises risk and maximises the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
Q9NUW8

UPID:
TYDP1_HUMAN

ALTERNATIVE NAMES:
-

ALTERNATIVE UPACC:
Q9NUW8; Q2HXX4; Q86TV8; Q96BK7; Q9NZM7; Q9NZM8

BACKGROUND:
The enzyme Tyrosyl-DNA phosphodiesterase 1 is key in hydrolyzing dead-end complexes between DNA and topoisomerase I, crucial for DNA repair mechanisms. It ensures the integrity of genetic material, acting on various DNA damages.

THERAPEUTIC SIGNIFICANCE:
Understanding the role of Tyrosyl-DNA phosphodiesterase 1 could open doors to potential therapeutic strategies for diseases like Spinocerebellar ataxia, highlighting its importance in neurodegenerative disease research.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.