Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This extensive focused library is tailor-made using the latest virtual screening and parameter assessment technology, operated by the Receptor.AI drug discovery platform. This technique is more effective than traditional methods, offering compounds with improved activity, selectivity, and safety.


Our selection of compounds is from a large virtual library of over 60 billion molecules. The production and distribution of these compounds are managed by Reaxense.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We utilise our cutting-edge, exclusive workflow to develop focused libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

It includes comprehensive molecular simulations of the catalytic and allosteric binding pockets and the ensemble virtual screening accounting for their conformational mobility. In the case of designing modulators, the structural changes induced by reaction intermediates are taken into account to leverage activity and selectivity.


Our library stands out due to several important features:


  • The Receptor.AI platform compiles comprehensive data on the target protein, encompassing previous experiments, literature, known ligands, structural details, and more, leading to a higher chance of selecting the most relevant compounds.

  • Advanced molecular simulations on the platform help pinpoint potential binding sites, making the compounds in our focused library ideal for finding allosteric inhibitors and targeting cryptic pockets.

  • Receptor.AI boasts over 50 tailor-made AI models, rigorously tested and proven in various drug discovery projects and research initiatives. They are crafted for efficacy, dependability, and precision, all of which are key in creating our focused libraries.

  • Beyond creating focused libraries, Receptor.AI offers comprehensive services and complete solutions throughout the preclinical drug discovery phase. Our success-based pricing model minimises risk and maximises the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
Q9NV66

UPID:
TYW1_HUMAN

ALTERNATIVE NAMES:
Radical S-adenosyl methionine and flavodoxin domain-containing protein 1; tRNA wybutosine-synthesizing protein 1 homolog; tRNA-yW-synthesizing protein

ALTERNATIVE UPACC:
Q9NV66; Q6PJG8; Q75MG8; Q75MN3; Q86V12; Q8IVS7; Q9H9C4

BACKGROUND:
The protein known as tRNA wybutosine-synthesizing protein 1 homolog, or tRNA-yW-synthesizing protein, is a probable component of the wybutosine biosynthesis pathway. Wybutosine is a hyper-modified guanosine found adjacent to the anticodon of eukaryotic phenylalanine tRNA. TYW1 catalyzes a key step in this pathway, the formation of the tricyclic 4-demethylwyosine, showcasing its pivotal role in tRNA modification and function.

THERAPEUTIC SIGNIFICANCE:
Exploring the function of tRNA wybutosine-synthesizing protein 1 homolog could unveil novel therapeutic avenues.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.