Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.


The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


Our top-notch dedicated system is used to design specialised libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

This approach involves comprehensive molecular simulations of the catalytic and allosteric binding pockets and ensemble virtual screening that accounts for their conformational flexibility. In the case of designing modulators, the structural adjustments caused by reaction intermediates are considered to improve activity and selectivity.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
Q9UBT6

UPID:
POLK_HUMAN

ALTERNATIVE NAMES:
DINB protein

ALTERNATIVE UPACC:
Q9UBT6; B2RBD2; Q5Q9G5; Q5Q9G6; Q5Q9G7; Q5Q9G8; Q86VJ8; Q8IZY0; Q8IZY1; Q8NB30; Q96L01; Q96Q86; Q96Q87; Q9UHC5

BACKGROUND:
The DNA polymerase kappa, known alternatively as DINB protein, is specifically involved in the DNA repair mechanism of translesion synthesis. This enzyme is essential for bypassing DNA lesions that block the replication machinery, inserting bases with a propensity for causing mutations due to its absence of 3'-5' proofreading exonuclease activity.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of DNA polymerase kappa offers promising avenues for therapeutic intervention. Its critical role in maintaining genomic stability through DNA repair pathways highlights its potential as a target in treating genetic disorders linked to DNA replication errors.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.