Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.


The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.


Contained in the library are leading modulators, each labelled with 38 ADME-Tox and 32 physicochemical and drug-likeness qualities. In addition, each compound is illustrated with its optimal docking poses, affinity scores, and activity scores, giving a complete picture.


We employ our advanced, specialised process to create targeted libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology leverages molecular simulations to examine a vast array of proteins, capturing their dynamics in both isolated forms and in complexes with other proteins. Through ensemble virtual screening, we thoroughly account for the protein's conformational mobility, identifying critical binding sites within functional regions and distant allosteric locations. This detailed exploration ensures that we comprehensively assess every possible mechanism of action, with the objective of identifying novel therapeutic targets and lead compounds that span a wide spectrum of biological functions.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
Q9UK22

UPID:
FBX2_HUMAN

ALTERNATIVE NAMES:
-

ALTERNATIVE UPACC:
Q9UK22; B2R7K7; Q5TGY0; Q6FGJ7; Q8TB29; Q9UKC6

BACKGROUND:
The F-box only protein 2 is integral to the ubiquitin-proteasome system, mediating the degradation of misfolded proteins in the endoplasmic reticulum. It recognizes and binds to sugar chains on unfolded glycoproteins, promoting their ubiquitination and subsequent proteasomal degradation. This function is essential for maintaining cellular protein quality control and preventing the harmful accumulation of unfolded proteins.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of F-box only protein 2 offers a promising pathway for developing novel therapeutic approaches. Its critical role in managing protein quality control and preventing the aggregation of misfolded proteins highlights its potential as a target in diseases caused by protein aggregation.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.