Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

Our detailed focused library is generated on demand with advanced virtual screening and parameter assessment technology powered by the Receptor.AI drug discovery platform. This method surpasses traditional approaches, delivering compounds of better quality with enhanced activity, selectivity, and safety.


We carefully select specific compounds from a vast collection of over 60 billion molecules in virtual chemical space. Reaxense helps in synthesizing and delivering these compounds.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


Our high-tech, dedicated method is applied to construct targeted libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

It includes comprehensive molecular simulations of the catalytic and allosteric binding pockets and the ensemble virtual screening accounting for their conformational mobility. In the case of designing modulators, the structural changes induced by reaction intermediates are taken into account to leverage activity and selectivity.


Our library distinguishes itself through several key aspects:


  • The Receptor.AI platform integrates all available data about the target protein, including past experiments, literature data, known ligands, structural information and more. This consolidated approach maximises the probability of prioritising highly relevant compounds.

  • The platform uses sophisticated molecular simulations to identify possible binding sites so that the compounds in the focused library are suitable for discovering allosteric inhibitors and the binders for cryptic pockets.

  • The platform integrates over 50 highly customisable AI models, which are thoroughly tested and validated on a multitude of commercial drug discovery programs and research projects. It is designed to be efficient, reliable and accurate. All this power is utilised when producing the focused libraries.

  • In addition to producing the focused libraries, Receptor.AI provides services and end-to-end solutions at every stage of preclinical drug discovery. The pricing model is success-based, which reduces your risks and leverages the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
Q9UK80

UPID:
UBP21_HUMAN

ALTERNATIVE NAMES:
Deubiquitinating enzyme 21; Ubiquitin thioesterase 21; Ubiquitin-specific-processing protease 21

ALTERNATIVE UPACC:
Q9UK80; Q59H60; Q5BKT5; Q5VTW9; Q5VTX0; Q9BTV1; Q9HBS2; Q9NYN4

BACKGROUND:
Ubiquitin carboxyl-terminal hydrolase 21, with alternative names such as Ubiquitin thioesterase 21, is pivotal in epigenetic transcriptional regulation through its action on histone H2A. Its activity releases repression on histone H3, allowing for transcriptional initiation. Beyond histone deubiquitination, it influences cellular processes by stabilizing BAZ2A/TIP5 and regulating ribosome quality control through deubiquitination of ribosomal proteins. This enzyme's ability to modulate gene expression and protein quality underscores its biological significance.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of Ubiquitin carboxyl-terminal hydrolase 21 offers a promising avenue for developing novel therapeutic approaches, especially in areas where the regulation of gene expression and protein quality is crucial.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.