Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.


The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.


Contained in the library are leading modulators, each labelled with 38 ADME-Tox and 32 physicochemical and drug-likeness qualities. In addition, each compound is illustrated with its optimal docking poses, affinity scores, and activity scores, giving a complete picture.


We use our state-of-the-art dedicated workflow for designing focused libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

It includes comprehensive molecular simulations of the catalytic and allosteric binding pockets and the ensemble virtual screening accounting for their conformational mobility. In the case of designing modulators, the structural changes induced by reaction intermediates are taken into account to leverage activity and selectivity.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
Q9UKF2

UPID:
ADA30_HUMAN

ALTERNATIVE NAMES:
-

ALTERNATIVE UPACC:
Q9UKF2; A8K8W8; Q5T3X6; Q9UKF1

BACKGROUND:
The function of Disintegrin and metalloproteinase domain-containing protein 30 is pivotal in the lysosomal processing of amyloid precursor protein. It activates CTSD/cathepsin D through cleavage, facilitating APP degradation, as evidenced by research (PubMed:27333034).

THERAPEUTIC SIGNIFICANCE:
Exploring the mechanisms of Disintegrin and metalloproteinase domain-containing protein 30 offers promising avenues for the development of novel therapeutic approaches.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.