Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The focused library is created on demand with the latest virtual screening and parameter assessment technology, supported by the Receptor.AI drug discovery platform. This method is more effective than traditional methods and results in higher-quality compounds with better activity, selectivity, and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


Contained in the library are leading modulators, each labelled with 38 ADME-Tox and 32 physicochemical and drug-likeness qualities. In addition, each compound is illustrated with its optimal docking poses, affinity scores, and activity scores, giving a complete picture.


Our top-notch dedicated system is used to design specialised libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our strategy employs molecular simulations to explore an extensive range of proteins, capturing their dynamics both individually and within complexes with other proteins. Through ensemble virtual screening, we address proteins' conformational mobility, uncovering key binding sites at both functional regions and remote allosteric locations. This comprehensive investigation ensures a thorough assessment of all potential mechanisms of action, with the goal of discovering innovative therapeutic targets and lead molecules across across diverse biological functions.


Our library stands out due to several important features:


  • The Receptor.AI platform compiles comprehensive data on the target protein, encompassing previous experiments, literature, known ligands, structural details, and more, leading to a higher chance of selecting the most relevant compounds.

  • Advanced molecular simulations on the platform help pinpoint potential binding sites, making the compounds in our focused library ideal for finding allosteric inhibitors and targeting cryptic pockets.

  • Receptor.AI boasts over 50 tailor-made AI models, rigorously tested and proven in various drug discovery projects and research initiatives. They are crafted for efficacy, dependability, and precision, all of which are key in creating our focused libraries.

  • Beyond creating focused libraries, Receptor.AI offers comprehensive services and complete solutions throughout the preclinical drug discovery phase. Our success-based pricing model minimises risk and maximises the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
Q9Y478

UPID:
AAKB1_HUMAN

ALTERNATIVE NAMES:
-

ALTERNATIVE UPACC:
Q9Y478; Q9UBV0; Q9UE20; Q9UEX2; Q9Y6V8

BACKGROUND:
5'-AMP-activated protein kinase subunit beta-1 plays a key role in cellular energy balance, acting as a core part of the AMPK enzyme complex. It responds to ATP depletion by activating energy-producing pathways while inhibiting energy-consuming processes. This regulatory mechanism is crucial for maintaining cellular energy homeostasis and has implications for cell growth and proliferation.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of 5'-AMP-activated protein kinase subunit beta-1 offers insights into novel therapeutic approaches. Given its influence on energy metabolism and cell proliferation, targeting this protein could lead to breakthroughs in treating metabolic diseases and malignancies.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.