Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This comprehensive focused library is produced on demand with state-of-the-art virtual screening and parameter assessment technology driven by Receptor.AI drug discovery platform. This approach outperforms traditional methods and provides higher-quality compounds with superior activity, selectivity and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We utilise our cutting-edge, exclusive workflow to develop focused libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

This approach involves comprehensive molecular simulations of the catalytic and allosteric binding pockets and ensemble virtual screening that accounts for their conformational flexibility. In the case of designing modulators, the structural adjustments caused by reaction intermediates are considered to improve activity and selectivity.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
Q9Y646

UPID:
CBPQ_HUMAN

ALTERNATIVE NAMES:
Lysosomal dipeptidase; Plasma glutamate carboxypeptidase

ALTERNATIVE UPACC:
Q9Y646; B2RD88; Q8NBZ1; Q9UNM8; Q9Y5X6

BACKGROUND:
The enzyme Carboxypeptidase Q, also referred to as Lysosomal dipeptidase or Plasma glutamate carboxypeptidase, is pivotal in the hydrolysis of circulating peptides. By catalyzing the conversion of dipeptides into amino acids, it plays a key role in metabolic pathways, including the release of thyroxine hormone from thyroglobulin.

THERAPEUTIC SIGNIFICANCE:
Exploring the functions of Carboxypeptidase Q offers a promising pathway to uncovering new therapeutic strategies. Its critical role in peptide metabolism and hormone release positions it as a potential target for treating metabolic and hormonal imbalances.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.