Focused On-demand Library for TIR domain-containing adapter molecule 1

Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The specialised, focused library is developed on demand with the most recent virtual screening and parameter assessment technology, guided by the Receptor.AI drug discovery platform. This approach exceeds the capabilities of traditional methods and offers compounds with higher activity, selectivity, and safety.


The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We employ our advanced, specialised process to create targeted libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our strategy employs molecular simulations to explore an extensive range of proteins, capturing their dynamics both individually and within complexes with other proteins. Through ensemble virtual screening, we address proteins' conformational mobility, uncovering key binding sites at both functional regions and remote allosteric locations. This comprehensive investigation ensures a thorough assessment of all potential mechanisms of action, with the goal of discovering innovative therapeutic targets and lead molecules across across diverse biological functions.


Key features that set our library apart include:


  • The Receptor.AI platform integrates extensive information about the target protein, such as historical experiments, academic research, known ligands, and structural insights, thereby increasing the likelihood of identifying highly relevant compounds.

  • The platform’s sophisticated molecular simulations are designed to discover potential binding sites, ensuring that our focused library is optimal for the discovery of allosteric inhibitors and binders for cryptic pockets.

  • With over 50 customisable AI models, verified through extensive testing in commercial drug discovery and research, Receptor.AI is efficient, reliable, and precise. These models are essential in the production of our focused libraries.

  • Receptor.AI not only produces focused libraries but also provides full services and solutions at every stage of preclinical drug discovery, with a success-based pricing structure that aligns our interests with the success of your project.


PARTNER
Receptor.AI
 
UPACC
Q8IUC6

UPID:
TCAM1_HUMAN

ALTERNATIVE NAMES:
Proline-rich, vinculin and TIR domain-containing protein B; Putative NF-kappa-B-activating protein 502H; Toll-interleukin-1 receptor domain-containing adapter protein inducing interferon beta

ALTERNATIVE UPACC:
Q8IUC6; B3Y691; O75532; Q86XP8; Q96GA0

BACKGROUND:
The protein TIR domain-containing adapter molecule 1, with alternative names such as Proline-rich, vinculin and TIR domain-containing protein B, is integral to the body's defense mechanism against invading pathogens. It facilitates the activation of NF-kappa-B and interferon-regulatory factors, playing a key role in apoptosis and antiviral responses.

THERAPEUTIC SIGNIFICANCE:
Exploring the function of TIR domain-containing adapter molecule 1 in the context of its association with diseases like encephalopathy, acute, infection-induced, 6, herpes-specific, highlights its potential as a target for innovative therapeutic interventions.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.