Focused On-demand Library for Sorting nexin-9

Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This extensive focused library is tailor-made using the latest virtual screening and parameter assessment technology, operated by the Receptor.AI drug discovery platform. This technique is more effective than traditional methods, offering compounds with improved activity, selectivity, and safety.


Our selection of compounds is from a large virtual library of over 60 billion molecules. The production and distribution of these compounds are managed by Reaxense.


Contained in the library are leading modulators, each labelled with 38 ADME-Tox and 32 physicochemical and drug-likeness qualities. In addition, each compound is illustrated with its optimal docking poses, affinity scores, and activity scores, giving a complete picture.


We utilise our cutting-edge, exclusive workflow to develop focused libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology leverages molecular simulations to examine a vast array of proteins, capturing their dynamics in both isolated forms and in complexes with other proteins. Through ensemble virtual screening, we thoroughly account for the protein's conformational mobility, identifying critical binding sites within functional regions and distant allosteric locations. This detailed exploration ensures that we comprehensively assess every possible mechanism of action, with the objective of identifying novel therapeutic targets and lead compounds that span a wide spectrum of biological functions.


Our library distinguishes itself through several key aspects:


  • The Receptor.AI platform integrates all available data about the target protein, including past experiments, literature data, known ligands, structural information and more. This consolidated approach maximises the probability of prioritising highly relevant compounds.

  • The platform uses sophisticated molecular simulations to identify possible binding sites so that the compounds in the focused library are suitable for discovering allosteric inhibitors and the binders for cryptic pockets.

  • The platform integrates over 50 highly customisable AI models, which are thoroughly tested and validated on a multitude of commercial drug discovery programs and research projects. It is designed to be efficient, reliable and accurate. All this power is utilised when producing the focused libraries.

  • In addition to producing the focused libraries, Receptor.AI provides services and end-to-end solutions at every stage of preclinical drug discovery. The pricing model is success-based, which reduces your risks and leverages the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
Q9Y5X1

UPID:
SNX9_HUMAN

ALTERNATIVE NAMES:
SH3 and PX domain-containing protein 1; SH3 and PX domain-containing protein 3A

ALTERNATIVE UPACC:
Q9Y5X1; Q9BSI7; Q9BVM1; Q9UJH6; Q9UP20

BACKGROUND:
The protein Sorting nexin-9, with its alternative identities as SH3 and PX domain-containing protein 1 and 3A, is integral to various cellular mechanisms including endocytosis, intracellular vesicle trafficking, and the successful completion of mitosis and cytokinesis. It aids in the normal cleavage furrow formation at mitosis end, and is active in endocytosis through clathrin-coated pits and actin-dependent pathways. Sorting nexin-9 also facilitates the degradation of EGFR following EGF signaling, and enhances the GTPase activity of DNM1, playing a crucial role in cellular dynamics and signaling.

THERAPEUTIC SIGNIFICANCE:
Understanding the role of Sorting nexin-9 could open doors to potential therapeutic strategies.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.