Focused On-demand Library for Cell division control protein 42 homolog

Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This extensive focused library is tailor-made using the latest virtual screening and parameter assessment technology, operated by the Receptor.AI drug discovery platform. This technique is more effective than traditional methods, offering compounds with improved activity, selectivity, and safety.


The compounds are cherry-picked from the vast virtual chemical space of over 60B molecules. The synthesis and delivery of compounds is facilitated by Reaxense.


The library features a range of promising modulators, each detailed with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Plus, each compound is presented with its ideal docking poses, affinity scores, and activity scores, ensuring a thorough insight.


We utilise our cutting-edge, exclusive workflow to develop focused libraries for enzymes.


 

Fig. 1. The screening workflow of Receptor.AI

It includes in-depth molecular simulations of both the catalytic and allosteric binding pockets, with ensemble virtual screening focusing on their conformational flexibility. For modulators, the process includes considering the structural shifts due to reaction intermediates to boost activity and selectivity.


Our library stands out due to several important features:


  • The Receptor.AI platform compiles comprehensive data on the target protein, encompassing previous experiments, literature, known ligands, structural details, and more, leading to a higher chance of selecting the most relevant compounds.

  • Advanced molecular simulations on the platform help pinpoint potential binding sites, making the compounds in our focused library ideal for finding allosteric inhibitors and targeting cryptic pockets.

  • Receptor.AI boasts over 50 tailor-made AI models, rigorously tested and proven in various drug discovery projects and research initiatives. They are crafted for efficacy, dependability, and precision, all of which are key in creating our focused libraries.

  • Beyond creating focused libraries, Receptor.AI offers comprehensive services and complete solutions throughout the preclinical drug discovery phase. Our success-based pricing model minimises risk and maximises the mutual benefits of the project's success.


PARTNER
Receptor.AI
 
UPACC
P60953

UPID:
CDC42_HUMAN

ALTERNATIVE NAMES:
G25K GTP-binding protein

ALTERNATIVE UPACC:
P60953; P21181; P25763; Q7L8R5; Q9UDI2

BACKGROUND:
The Cell division control protein 42 homolog, known alternatively as G25K GTP-binding protein, is crucial for various cellular functions such as cell polarization, migration, and the maintenance of cellular structures like filopodia and podosomes. It also plays a significant role in the regulation of cell division and phagocytosis.

THERAPEUTIC SIGNIFICANCE:
Given its critical role in Takenouchi-Kosaki syndrome, research into the Cell division control protein 42 homolog offers promising avenues for the development of targeted therapies. Its multifaceted role in biological systems makes it an intriguing subject for scientific inquiry and drug discovery.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.