Focused On-demand Library for Surfeit locus protein 1

Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

This comprehensive focused library is produced on demand with state-of-the-art virtual screening and parameter assessment technology driven by Receptor.AI drug discovery platform. This approach outperforms traditional methods and provides higher-quality compounds with superior activity, selectivity and safety.


Our selection of compounds is from a large virtual library of over 60 billion molecules. The production and distribution of these compounds are managed by Reaxense.


In the library, a selection of top modulators is provided, each marked with 38 ADME-Tox and 32 parameters related to physicochemical properties and drug-likeness. Also, every compound comes with its best docking poses, affinity scores, and activity scores, providing a comprehensive overview.


We utilise our cutting-edge, exclusive workflow to develop focused libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Our methodology leverages molecular simulations to examine a vast array of proteins, capturing their dynamics in both isolated forms and in complexes with other proteins. Through ensemble virtual screening, we thoroughly account for the protein's conformational mobility, identifying critical binding sites within functional regions and distant allosteric locations. This detailed exploration ensures that we comprehensively assess every possible mechanism of action, with the objective of identifying novel therapeutic targets and lead compounds that span a wide spectrum of biological functions.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
Q15526

UPID:
SURF1_HUMAN

ALTERNATIVE NAMES:
-

ALTERNATIVE UPACC:
Q15526; Q5T8T3; Q5T8T4

BACKGROUND:
The function of Surfeit locus protein 1 within the MITRAC complex underscores its significance in the assembly of cytochrome c oxidase. This protein's role is critical for the proper functioning of the mitochondrial respiratory chain, which is vital for cellular energy metabolism.

THERAPEUTIC SIGNIFICANCE:
Understanding the role of Surfeit locus protein 1 could open doors to potential therapeutic strategies. Its involvement in conditions like Mitochondrial complex IV deficiency and Charcot-Marie-Tooth disease 4K highlights the therapeutic potential of interventions targeting this protein to address mitochondrial and peripheral nervous system disorders.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.