Focused On-demand Library for Aladin

Focused On-demand Libraries - Receptor.AI Collaboration


Explore the Potential with AI-Driven Innovation

The specialised, focused library is developed on demand with the most recent virtual screening and parameter assessment technology, guided by the Receptor.AI drug discovery platform. This approach exceeds the capabilities of traditional methods and offers compounds with higher activity, selectivity, and safety.


From a virtual chemical space containing more than 60 billion molecules, we precisely choose certain compounds. Reaxense aids in their synthesis and provision.


The library includes a list of the most promising modulators annotated with 38 ADME-Tox and 32 physicochemical and drug-likeness parameters. Also, each compound is presented with its optimal docking poses, affinity scores, and activity scores, providing a comprehensive overview.


Our top-notch dedicated system is used to design specialised libraries.


 

Fig. 1. The screening workflow of Receptor.AI

Utilising molecular simulations, our approach thoroughly examines a wide array of proteins, tracking their conformational changes individually and within complexes. Ensemble virtual screening enables us to address conformational flexibility, revealing essential binding sites at functional regions and allosteric locations. Our rigorous analysis guarantees that no potential mechanism of action is overlooked, aiming to uncover new therapeutic targets and lead compounds across diverse biological functions.


Several key aspects differentiate our library:


  • Receptor.AI compiles an all-encompassing dataset on the target protein, including historical experiments, literature data, known ligands, and structural insights, maximising the chances of prioritising the most pertinent compounds.

  • The platform employs state-of-the-art molecular simulations to identify potential binding sites, ensuring the focused library is primed for discovering allosteric inhibitors and binders of concealed pockets.

  • Over 50 customisable AI models, thoroughly evaluated in various drug discovery endeavours and research projects, make Receptor.AI both efficient and accurate. This technology is integral to the development of our focused libraries.

  • In addition to generating focused libraries, Receptor.AI offers a full range of services and solutions for every step of preclinical drug discovery, with a pricing model based on success, thereby reducing risk and promoting joint project success.


PARTNER
Receptor.AI
 
UPACC
Q9NRG9

UPID:
AAAS_HUMAN

ALTERNATIVE NAMES:
Adracalin

ALTERNATIVE UPACC:
Q9NRG9; Q5JB47; Q9NWI6; Q9UG19

BACKGROUND:
The protein Aladin, known alternatively as Adracalin, plays a critical role in neural development. It is essential for the accurate placement of AURKA and NUMA1, facilitating correct spindle assembly and chromosome positioning. This function is vital for the health of the central, peripheral, and autonomic nervous systems.

THERAPEUTIC SIGNIFICANCE:
Mutations in Aladin are linked to the development of Achalasia-addisonianism-alacrima syndrome, characterized by adrenal insufficiency and neurological impairments. Exploring the role of Aladin offers a pathway to innovative treatments for this complex syndrome.

Looking for more information on this library or underlying technology? Fill out the form below and we will be in touch with all the details you need.